En la visión simplificada del denominado enlace covalente, uno o más electrones (frecuentemente un par de electrones) son llevados al espacio entre los dos núcleos atómicos. Ahí, los electrones negativamente cargados son atraídos a las cargas positivas de ambos núcleos, en vez de sólo su propio núcleo. Esto vence a la repulsión entre los dos núcleos positivamente cargados de los dos átomos, y esta atracción tan grande mantiene a los dos núcleos en una configuración de equilibrio relativamente fija, aunque aún vibrarán en la posición de equilibrio. En resumen, el enlace covalente involucra la compartición de electrones en los que los núcleos positivamente cargados de dos o más átomos atraen simultáneamente a los electrones negativamente cargados que están siendo compartidos. En un enlace covalente polar, uno o más electrones son compartidos inequitativamente entre dos núcleos.
En una visión simplificada de un enlace iónico, el electrón de enlace no es compartido, sino que es transferido. En este tipo de enlace, el orbital atómico más externo de un átomo tiene un lugar libre que permite la adición de uno o más electrones. Estos electrones recientemente agregados ocupan potencialmente un estado de menor energía (más cerca al núcleo debido a la alta carga nuclear efectiva) de lo que experimentan en un tipo diferente de átomo. En consecuencia, un núcleo ofrece una posición de más fuerte unión a un electrón de lo que lo hace el otro núcleo. Esta transferencia ocasiona que un átomo asuma una carga neta positiva, y que el otro asuma una carga neta negativa. Entonces, el enlace resulta de la atracción electrostática entre los átomos, y los átomos se constituyen en ((iones)) de carga positiva o negativa.
Todos los enlaces pueden ser explicados por la teoría cuántica, pero, en la práctica, algunas reglas de simplificación les permiten a los químicos predecir la fuerza de enlace, direccionalidad y polaridad de los enlaces. La regla del octeto y la (TREPEV) teoría de repulsión de pares de electrones de la capa de valencia son dos ejemplos.
Existen teorías más sofisticadas, como la teoría del enlace de valencia, que incluye la hibridación de orbitales y la resonancia, y el método de combinación lineal de orbitales atómicos dentro de la teoría de los orbitales moleculares, que incluye a la teoría del campo de los ligantes. La electrostática es usada para describir polaridades de enlace y los efectos que ejerce en las sustancias químicas.
Historia del concepto de enlace químicoEditar
Las primeras especulaciones respecto a la naturaleza del enlace químico son tan tempranas como en el siglo XII. Se suponía que ciertos tipos de especies químicas estaban unidas entre sí por un tipo de afinidad química.
En 1704, Isaac Newton esbozó su teoría de enlace atómico, en «Query 31» de su Opticks, donde los átomos se unen unos a otros por alguna «fuerza». Específicamente, después de investigar varias teorías populares, en boga en aquel tiempo, de cómo los átomos se podía unir unos a otros, por ejemplo, «átomos enganchados», «átomos pegados unos a otros por reposo», o «unidos por movimientos conspirantes», Newton señaló lo que inferiría posteriormente a partir de su cohesión que:
Las partículas se atraen unas a otras por alguna fuerza, que en contacto inmediato es excesivamente grande, a distancias pequeñas desempeñan operaciones químicas y su efecto deja de sentirse no lejos de las partículas.
En 1819, a raíz de la invención de la pila voltaica, Jöns Jakob Berzelius desarrolló una teoría de combinación química, introduciendo indirectamente el carácter electropositivo y electronegativo de los átomos combinantes. A mediados del siglo XIX, Edward Frankland, F. A. Kekule, A. S. Couper, A. M. Butlerov y Hermann Kolbe, ampliando la teoría de radicales, desarrollaron la teoría de valencia, originalmente llamado «poder combinante» en que los compuestos se mantenía unidos debido a la atracción entre polos positivo y negativo. En 1916, el químico Gilbert N. Lewis desarrolló el concepto de enlace de par de electrones, en el que dos átomos pueden compartir uno y seis electrones, formando el enlace de un solo electrón, enlace simple, enlace doble, o enlace triple:
En las propias palabras de Lewis:
Un electrón puede formar parte de las envolturas de dos átomos diferentes y no puede decirse que pertenezca a uno simplemente o exclusivamente.
El mismo año, Walther Kossel lanzó una teoría similar a la de Lewis, con la diferencia de que su modelo asumía una transferencia completa de electrones entre los átomos, con lo que era un modelo de enlace iónico. Tanto Lewis y Kossel estructuraron sus modelos de enlace a partir de la regla de Abegg (1904).
En 1927, el físico danés Oyvind Burrau derivó la primera descripción cuántica matemáticamente completa de un enlace químico simple, el producido por un electrón en el ion de hidrógeno molecular (dihidrogenilio), H2+. Este trabajo mostró que la aproximación cuántica a los enlaces químicos podrían ser correctas fundamental y cualitativamente, pero los métodos matemáticos usados no podrían extenderse a moléculas que contuvieran más de un electrón. Una aproximación más práctica, aunque menos cuantitativa, fue publicada en el mismo año por Walter Heitler y Fritz London. El método de Heitler-London forma la base de lo que ahora se denomina teoría del enlace de valencia. En 1929, sir John Lennard-Jones introdujo el método de combinación lineal de orbitales atómicos (CLOA o dentro de la teoría de orbitales moleculares, sugiriendo también métodos para derivar las estructuras electrónicas de moléculas de F2 (flúor) y las moléculas de O2 (oxígeno), a partir de principios cuánticos básicos. Esta teoría de orbital molecular representó un enlace covalente como un orbital formado por combinación de los orbitales atómicos de la mecánica cuántica de Schrödinger que habían sido hipotetizados por los electrones en átomos solitarios. Las ecuaciones para los electrones de enlace en átomos multielectrónicos no podrían ser resueltos con perfección matemática (esto es, analíticamente), pero las aproximaciones para ellos aún producen muchas predicciones y resultados cualitativos buenos. Muchos cálculos cuantitativos en química cuántica moderna usan tanto las teorías de orbitales moleculares o de enlace de valencia como punto de partida, aunque una tercera aproximación, la teoría del funcional de la densidad, se ha estado haciendo más popular en años recientes.
En 1935, H. H. James y A. S. Coolidge llevaron a cabo un cálculo sobre la molécula de dihidrógeno que, a diferencia de todos los cálculos previos que usaban funciones solo de la distancia de los electrones a partir del núcleo atómico, usó funciones que sólo adicionaban explícitamente la distancia entre los dos electrones. Con 13 parámetros ajustables, ellos obtienen el resultado muy cercano al resultado experimental para la energía de disociación de enlace. Posteriores extensiones usaron hasta 54 parámetros y producen gran concordancia con los experimentos. Este cálculo convenció a la comunidad científica que la teoría cuántica podría concordar con los experimentos. Sin embargo, esta aproximación no tiene relación física con la teoría de enlace de valencia y orbitales moleculares y es difícil de extender a moléculas más grandes.
Teoría de enlace de valenciaEditar
En el año 1927, la teoría de enlace de valencia fue formulada, argumentando esencialmente que el enlace químico se forma cuando dos electrones de valencia, en sus respectivos orbitales atómicos, trabajan o funcionan para mantener los dos núcleos juntos, en virtud a los efectos de disminución de energía del sistema. En 1939, a partir de esta teoría, el químico Linus Pauling publicó lo que algunos consideran uno de las más importantes publicaciones en la historia de la química: «Sobre la naturaleza del enlace químico». En este documento, tomando en cuenta los trabajos de Lewis, la teoría del enlace de valencia (TEV) de Heitler y London, así como su propio trabajo preliminar, presentó seis reglas para el enlace de electrones compartidos, aunque las tres primeras ya eran conocidas genéricamente:
1. El enlace de par de electrones a través de la interacción de un electrón desapareado de cada uno de dos átomos. 2. El spin de los electrones involucrados en el enlace, tienen que ser opuestos. 3. Una vez apareados, los dos electrones no pueden formar parte de enlaces adicionales.
Sus tres últimas reglas eran nuevas:
4. Los términos de intercambio de electrones para formar el enlace involucra solo una función de onda de cada átomo. 5. Los electrones disponibles en el menor nivel de energía forman los enlaces más fuertes. 6. De dos orbitales en un átomo, el que pueda solaparse en mayor proporción con un orbital de otro átomo formará el enlace más fuerte, y este enlace tenderá a orientarse en la dirección del orbital más concentrado.
A partir de este artículo, Pauling publicaría en 1939 un libro de texto, Sobre la Naturaleza del Enlace Químico’, que vendría a ser llamado por algunos como la «biblia» de la química moderna. Este libro ayudó a los químicos experimentales a entender el impacto de la teoría cuántica sobre la química. Sin embargo, la edición posterior de 1939 falló en explicar adecuadamente los problemas que parecían ser mejor entendibles por la teoría de orbitales moleculares. El impacto de la teoría del enlace de valencia declinó durante la década de 1960 y 1970 a la par con el crecimiento en popularidad de la teoría de orbitales moleculares, que estaba siendo implementada en muchos programas de grandes ordenadores. A partir de la década de 1960, los problemas más difíciles de la implementación de la teoría del enlace de valencia en programas de computadoras habían sido mayormente resueltos y la teoría del enlace de valencia vio un resurgimiento.
Teoría de los orbitales molecularesEditar
La teoría de los orbitales moleculares (TOM) usa una combinación lineal de orbitales atómicos para formar orbitales moleculares, que abarcan la molécula entera. Estos orbitales son divididos frecuentemente en orbitales enlazantes, orbitales antienlazantes, y orbitales de no enlace. Un orbital molecular es simplemente un orbital de Schrödinger que incluye varios, pero frecuentemente solo dos, núcleos. Si este orbital es del tipo en que los electrones tienen una mayor probabilidad de estar entre los núcleos que en cualquier otro lugar, el orbital será un orbital enlazante, y tenderá a mantener los núcleos cerca. Si los electrones tienden a estar presentes en un orbital molecular en que pasan la mayor parte del tiempo en cualquier lugar excepto entre los núcleos, el orbital funcionará como un orbital antienlazante, y realmente debilitará el enlace. Los electrones en orbitales no enlazantes tienden a estar en orbitales profundos (cerca a los orbitales atómicos) asociados casi enteramente o con un núcleo o con otro y entonces pasarán igual tiempo entre los núcleos y no en ese espacio. Estos electrones no contribuyen ni detractan la fuerza del enlace.
El modelo de enlaceEditar
A pesar de que todos los electrones de un átomo giran alrededor de su núcleo, solo los electrones de valencia giran más lejos de él, mientras más alejados del núcleo se encuentren, más posibilidades tendrá ese átomo de interactuar con electrones de otro.
Los electrones de valencia interaccionan de distintas formas, ya que dependen de las características del otro átomo con el que pueda conjuntarse. Algunos átomos ceden sus electrones a otro para lograr su equilibrio, otros los ganan y a veces también los comparten. Por ejemplo, en el fluoruro de litio (LiF), uno de los átomos (el litio) dona su electrón de valencia, mientras que el flúor lo recibe. De esta forma se forman iones, átomos con carga neta, positivos (Li+) y negativos (F-).
La representación de Lewis se caracteriza por ilustrar los símbolos de los elementos y los electrones de valencia que hay alrededor de ellos como puntos o taches. Para interpretar la simbología del agua en la representación de Lewis, hay que saber que cada uno de los dos átomos de hidrógeno sólo cuenta con un electrón de valencia que pueden ser representados con un punto; mientras que el átomo de oxígeno tiene ocho electrones de los cuales seis son de valencia y se pueden representar con taches para diferenciarlos de los electrones de valencia del hidrógeno.
La mayoría de los átomos se unen compartiendo electrones mediante uno, dos o hasta tres pares. Para no colocar tantos puntos, cada par compartido se representa como una línea (H-O-H). Del mismo modo, casi todos los átomos muestran una tendencia a perder, ganar o compartir un número de electrones necesarios para completar ocho electrones de valencia (regla del octeto), tal como lo hace el oxígeno en la molécula del agua. Por otro lado, únicamente el hidrógeno completa dos, por lo que se dice que ha formado la regla del dúo al solo tener como máximo dos electrones.
Comparación de las teorías del enlace de valencia y de los orbitales molecularesEditar
En algunos aspectos, la teoría del enlace de valencia es superior a la teoría de orbitales moleculares. Cuando se aplica a la molécula más simple de dos electrones, H2, la teoría del enlace de valencia, incluso al nivel más simple de la aproximación de Heitler-London, produce una aproximación más cercana a la energía de enlace, y provee una representación más exacta del comportamiento de los electrones al formarse y romperse los enlaces químicos. En contraste, la teoría de orbitales moleculares simple predice que la molécula de hidrógeno se disocia en una superposición lineal de átomos de hidrógeno, e iones positivos y negativos de hidrógeno, un resultado completamente contrario a la evidencia física. Esto explica en parte por qué la curva de energía total versus la distancia interatómica del método de orbitales de valencia yace por encima de la curva del método de orbitales moleculares a todas las distancias y, más particularmente, para distancias mucho más grandes. Esta situación surge para todas las moléculas diatómicas homonucleares y es particularmente un problema para el F2, para el que la energía mínima de la curva con la teoría de orbitales moleculares es aún mayor en energía que la energía de los dos átomos de flúor no enlazados.
Los conceptos de hibridación son versátiles, y la variabilidad en el enlace en muchos compuestos orgánicos es tan modesta que la teoría del enlace permanece como una parte integral del vocabulario del químico orgánico. Sin embargo, el trabajo de Friedrich Hund, Robert Mulliken, y Gerhard Herzberg mostró que la teoría de orbitales moleculares provee una descripción más apropiada de las propiedades espectroscópicas, magnéticas y de ionización de las moléculas. Las deficiencias de la teoría del enlace se hicieron aparentes cuando las moléculas hipervalentes (por ejemplo, el PF5) fueron explicadas sin el uso de los orbitales «d» que eran cruciales en el esquema de enlace basado en hibridación, propuesto para tales moléculas por Pauling. Los complejos metálicos y compuestos deficientes en electrones (como el diborano) también resultaron ser mejor descritos por la teoría de orbitales moleculares, aunque también se han hecho descripciones usando la teoría del enlace de valencia.
En la década de 1930, los dos métodos competían fuertemente hasta que se observó que ambas eran aproximaciones a una teoría mejor. Si se toma la estructura de enlace de valencia simple y se mezcla en todas las estructuras covalentes e iónicas posibles que surgen de un juego particular de orbitales atómicos, se llega a lo que se llama la función de onda de interacción de configuración completa. Si se toma la descripción de orbital molecular simple del estado fundamental y se combina dicha función con las funciones que describen todos los estados excitados posibles usando los orbitales no ocupados que surgen del mismo juego de orbitales atómicos, también se llega a la función de onda de interacción de configuración completa. Puede verse que la aproximación de orbital molecular simple da demasiado peso a las estructuras iónicas, mientras que la aproximación de enlace de valencia simple le da demasiado poco. Esto puede ser descrito diciendo que la aproximación de orbitales moleculares simple es demasiado deslocalizada, mientras que la aproximación de enlaces de valencia es demasiado localizado.
Estas dos aproximaciones son ahora observadas como complementarias, cada una proveyendo sus propias perspectivas en el problema del enlace químico. Los cálculos modernos en química cuántica generalmente empiezan a partir de (pero finalmente van más allá) un orbital molecular en vez de una aproximación de enlace de valencia, no por algún tipo de superioridad intrínseca de la segunda, sino porque la aproximación de orbitales moleculares es mucho más rápidamente adaptable a computación numérica. Sin embargo, ahora hay mejores programas de enlace de valencia disponibles.